Systems AstroLab

Elena Galea
ICREA Research Professor
Lab members
Irene Fernández, PhD student
Lab contact
Institution
Our projects
I seek to unravel the mechanisms whereby a brain cell called ‘astrocyte’ contributes to higher-brain functions —cognition, memory, emotion— and to establish the pathological consequences of astrocyte dysfunction. Three core ideas guide my research. First, astrocytes not only carry out homeostatic functions in support of neurons, but they also compute, i.e., they process information intelligently, plausibly by way of calcium transients. Second, astrocytes are superior therapeutic targets: increasing their resilience or restoring their malfunction in acute or chronic neurological diseases will have a beneficial impact on multiple pathological processes at once. Three, mathematics and systems biology —which has lately included artificial intelligence— are indispensable tools to clarify astrocyte (dys)function, identify astrocyte-based molecular signatures in human fluids, and develop astrocyte-targeted therapies.
Last publications
Escartin C*, Galea* E et cols. Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, in press. * First and corresponding authors. doi: 10.1038/s41593-020-00783-4
Kastanenka KV, Moreno-Bote R, De Pitta M, Perea G, Eraso-Pichot A, Masgrau R, Poskanzer KE & Galea E 2020, A roadmap to integrate astrocytes into Systems Neuroscience. GLIA, 68:5 – 26, 2020. doi: 10.1002/glia.23632
Larramona-Arcas R, Gonzalez-Arias C, Perea G, Gutierrez A, Vitorica J, Garcia-Barrera T; Gomez-Ariza JL, Pascua-Maestro R, Ganfornina MD, Kara E, Hudry E, Martinez-Vicente M, Vila M, Galea E, Masgrau R. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol Neurodegener. 15:135, 2020. doi: 10.1186/s13024-020-00382-8.
Romeo-Guitart D, Fores J, Herrando-Grabulosa M, Valls R, Leiva-Rodriguez T, Galea E, Gonzalez-Perez F, Navarro X, Petegnief V, Bosch A, Coma M, Manuel Mas J, Casas C. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence Scientific Reports, 8:1879, 2018. doi: 10.1038/s41598-018-19767-3
Eraso-Pichot A, Brasó-Vives M, Golbano A, Menacho C, Claro E, Galea E, Masgrau R. Gene set enrichment analysis of mouse and human mitochondriomes reveals fatty-acid oxidation in astrocytes, GLIA, 66, 8, 1724 – 1735, 2018. doi: 10.1002/glia.23330
Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Markus M, McQueen J, Hampton DW, Torvell M, Tiwari SS, McKay S, Eraso-Pichot A, Zorzano A, Masgrau R, Galea E, Chandran S, Wyllie DJA, Simpson TI & Hardingham GE. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism, Nat Commun, 8:15132, 2017. doi: 10.1038/ncomms15132
Pardo L, Valor LM, Eraso-Pichot A, Barco A, Golbano A, Hardingham GE, Masgrau R & Galea E. CREB Regulates Distinct Adaptive Transcriptional Programs in Astrocytes and Neurons. Scientific Reports, 7, 6390, 2017. doi: 10.1038/s41598-017-06231-x
Masgrau R, Guaza C, Ransohoff RM & Galea E. Should We Stop Saying ‘Glia’ and ‘Neuroinflammation’? Trends In Molecular Medicine, 23, 6, 486 – 500, 2017. doi: 10.1016/j.molmed.2017.04.005
Pardo L, Schlueter A, Valor LM, Barco A, Giralt M, Golbano A, Hidalgo J, Jia P, Zhao Z, Jove M, Portero-Otin M, Ruiz M, Gimenez-Llort L, Masgrau R, Pujol A & Galea E. Targeted activation of CREB in reactive astrocytes is neuroprotective in focal acute cortical injury. Glia, 64, 5, 853 – 874, 2016. doi: 10.1002/glia.22969
Galea E, Morrison W, Hudry E, Arbel-Hornath M, Bacskai B, Gómez-Isla T, Stanley HE & Hyman BT. Topological analyses in APP/P1 mice reveal that astrocytes do not migrate to plaques. Proceedings of the National Academy of Sciences, 112:15556-15561, 2015 doi: 10.1073/pnas.1516779112

Elena Galea
ICREA Research Professor
Lab members
Irene Fernández, PhD student
Lab contact
Institution
Our projects
I seek to unravel the mechanisms whereby a brain cell called ‘astrocyte’ contributes to higher-brain functions —cognition, memory, emotion— and to establish the pathological consequences of astrocyte dysfunction. Three core ideas guide my research. First, astrocytes not only carry out homeostatic functions in support of neurons, but they also compute, i.e., they process information intelligently, plausibly by way of calcium transients. Second, astrocytes are superior therapeutic targets: increasing their resilience or restoring their malfunction in acute or chronic neurological diseases will have a beneficial impact on multiple pathological processes at once. Three, mathematics and systems biology —which has lately included artificial intelligence— are indispensable tools to clarify astrocyte (dys)function, identify astrocyte-based molecular signatures in human fluids, and develop astrocyte-targeted therapies.
Last publications
Escartin C*, Galea* E et cols. Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, in press. * First and corresponding authors. doi: 10.1038/s41593-020-00783-4
Kastanenka KV, Moreno-Bote R, De Pitta M, Perea G, Eraso-Pichot A, Masgrau R, Poskanzer KE & Galea E 2020, A roadmap to integrate astrocytes into Systems Neuroscience. GLIA, 68:5 – 26, 2020. doi: 10.1002/glia.23632
Larramona-Arcas R, Gonzalez-Arias C, Perea G, Gutierrez A, Vitorica J, Garcia-Barrera T; Gomez-Ariza JL, Pascua-Maestro R, Ganfornina MD, Kara E, Hudry E, Martinez-Vicente M, Vila M, Galea E, Masgrau R. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol Neurodegener. 15:135, 2020. doi: 10.1186/s13024-020-00382-8.
Romeo-Guitart D, Fores J, Herrando-Grabulosa M, Valls R, Leiva-Rodriguez T, Galea E, Gonzalez-Perez F, Navarro X, Petegnief V, Bosch A, Coma M, Manuel Mas J, Casas C. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence Scientific Reports, 8:1879, 2018. doi: 10.1038/s41598-018-19767-3
Eraso-Pichot A, Brasó-Vives M, Golbano A, Menacho C, Claro E, Galea E, Masgrau R. Gene set enrichment analysis of mouse and human mitochondriomes reveals fatty-acid oxidation in astrocytes, GLIA, 66, 8, 1724 – 1735, 2018. doi: 10.1002/glia.23330
Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Markus M, McQueen J, Hampton DW, Torvell M, Tiwari SS, McKay S, Eraso-Pichot A, Zorzano A, Masgrau R, Galea E, Chandran S, Wyllie DJA, Simpson TI & Hardingham GE. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism, Nat Commun, 8:15132, 2017. doi: 10.1038/ncomms15132
Pardo L, Valor LM, Eraso-Pichot A, Barco A, Golbano A, Hardingham GE, Masgrau R & Galea E. CREB Regulates Distinct Adaptive Transcriptional Programs in Astrocytes and Neurons. Scientific Reports, 7, 6390, 2017. doi: 10.1038/s41598-017-06231-x
Masgrau R, Guaza C, Ransohoff RM & Galea E. Should We Stop Saying ‘Glia’ and ‘Neuroinflammation’? Trends In Molecular Medicine, 23, 6, 486 – 500, 2017. doi: 10.1016/j.molmed.2017.04.005
Pardo L, Schlueter A, Valor LM, Barco A, Giralt M, Golbano A, Hidalgo J, Jia P, Zhao Z, Jove M, Portero-Otin M, Ruiz M, Gimenez-Llort L, Masgrau R, Pujol A & Galea E. Targeted activation of CREB in reactive astrocytes is neuroprotective in focal acute cortical injury. Glia, 64, 5, 853 – 874, 2016. doi: 10.1002/glia.22969
Galea E, Morrison W, Hudry E, Arbel-Hornath M, Bacskai B, Gómez-Isla T, Stanley HE & Hyman BT. Topological analyses in APP/P1 mice reveal that astrocytes do not migrate to plaques. Proceedings of the National Academy of Sciences, 112:15556-15561, 2015 doi: 10.1073/pnas.1516779112